Cette recherche s'applique uniquement aux ressources en bibliothèque.
116 résultats
Trier par:
Ajouter à la liste:
Étendre à toutes les références (sans texte intégral)
    • Livre
    Sélectionner

    Oriented matroids

    Björner, Anders
    Cambridge : Cambridge University Press
    1993
    Recherche de la disponibilité
    Plus…
    Chargement
    Erreur de chargement
    Titre: Oriented matroids / Anders Björner ... [et al.]
    Auteur: Björner, Anders
    Editeur: Cambridge : Cambridge University Press
    Date: 1993
    Collation: XII, 516 p. ; 24 cm
    Collection: Encyclopedia of mathematics and its applications ; vol. 46
    Documents dans cette collection: Encyclopedia of Mathematics and Its Applications
    Sujet RERO: Matroïdes - Programmation linéaire
    Classification: ams 05
    DIUF 4.4
    Identifiant: 0521418364 (ISBN)
    No RERO: 1655719
    Permalien:
    http://data.rero.ch/01-1655719/html?view=FR_V1

    • Plusieurs versions

    A q -analogue of the FKG inequality and some applications

    Björner, Anders
    Combinatorica, 2011, Vol.31(2), pp.151-164 [Revue évaluée par les pairs]

    • Plusieurs versions

    A cell complex in number theory

    Björner, Anders
    Advances in Applied Mathematics, January 2011, Vol.46(1-4), pp.71-85 [Revue évaluée par les pairs]

    • Article
    Sélectionner

    Let \Delta be a Cohen-Macaulay complex

    Björner, Anders
    Cornell University
    Disponible
    Plus…
    Titre: Let \Delta be a Cohen-Macaulay complex
    Auteur: Björner, Anders
    Sujet: Mathematics - Combinatorics
    Description: The concept of Cohen-Macaulay complexes emerged in the mid-1970s and swiftly became the focal point of an attractive and richly connected new area of mathematics, at the crossroads of combinatoics, commutative algebra and topology. As the main architect of these developments, Richard Stanley has made fundamental contributions over many years. This paper contains some brief mathematical discussions related to the Cohen-Macaulay property, and some personal memories. The characterization of Gorenstein* and homotopy Gorenstein* complexes and the relevance in that connection of the Poincar\'e conjecture is discussed. Another topic is combinatorial aspects of a recent result on the homotopy Cohen-Macaulayness of certain subsets of geometric lattices, motivated by questions in tropical geometry. Comment: Based on a talk given at the R. Stanley 70th birthday conference, MIT, June 2014
    Identifiant: 1411.2165 (ARXIV ID)

    • Article
    Sélectionner

    Let \Delta be a Cohen-Macaulay complex

    Björner, Anders
    arXiv.org, Nov 8, 2014
    © ProQuest LLC All rights reserved, Engineering Database, Publicly Available Content Database, ProQuest Engineering Collection, ProQuest Technology Collection, ProQuest SciTech Collection, Materials Science & Engineering Database, ProQuest Central (new), ProQuest Central Korea, SciTech Premium Collection, Technology Collection, ProQuest Central Essentials, ProQuest One Academic, Engineering Collection (ProQuest)
    Disponible
    Plus…
    Titre: Let \Delta be a Cohen-Macaulay complex
    Auteur: Björner, Anders
    Contributeur: Björner, Anders (pacrepositoryorg)
    Sujet: Set Theory ; Lattices (Mathematics) ; Combinatorial Analysis ; Topology
    Description: The concept of Cohen-Macaulay complexes emerged in the mid-1970s and swiftly became the focal point of an attractive and richly connected new area of mathematics, at the crossroads of combinatoics, commutative algebra and topology. As the main architect of these developments, Richard Stanley has made fundamental contributions over many years. This paper contains some brief mathematical discussions related to the Cohen-Macaulay property, and some personal memories. The characterization of Gorenstein* and homotopy Gorenstein* complexes and the relevance in that connection of the Poincaré conjecture is discussed. Another topic is combinatorial aspects of a recent result on the homotopy Cohen-Macaulayness of certain subsets of geometric lattices, motivated by questions in tropical geometry.
    Fait partie de: arXiv.org, Nov 8, 2014
    Identifiant: 2331-8422 (E-ISSN)

    • Livre
    Sélectionner

    Combinatorics of Coxeter groups

    Björner, Anders
    Brenti, Francesco
    New York : Springer
    [2005]
    Recherche de la disponibilité
    Plus…
    Chargement
    Erreur de chargement
    Titre: Combinatorics of Coxeter groups / Anders Björner, Francesco Brenti
    Auteur: Björner, Anders
    Contributeur: Brenti, Francesco
    Editeur: New York : Springer
    Date: [2005]
    Collation: XII, 363 p. : ill. ; 25 cm
    Collection: Graduate Texts in Mathematics ; 231
    Documents dans cette collection: Graduate texts in mathematics
    Classification: ams 20
    ams 05
    IMATH A-4
    Identifiant: 3540442383 (ISBN)
    No RERO: R003905439
    Permalien:
    http://data.rero.ch/01-R003905439/html?view=FR_V1

    • Plusieurs versions

    On the connectivity of manifold graphs

    Björner, Anders, Vorwerk, Kathrin
    Proceedings of the American Mathematical Society, 2015, Vol.143(10), pp.4123-4132 [Revue évaluée par les pairs]

    • Article
    Sélectionner

    On Codimension one Embedding of Simplicial Complexes

    Björner, Anders, Goodarzi, Afshin
    arXiv.org, Mar 3, 2017
    © ProQuest LLC All rights reserved, Engineering Database, Publicly Available Content Database, ProQuest Engineering Collection, ProQuest Technology Collection, ProQuest SciTech Collection, Materials Science & Engineering Database, ProQuest Central (new), ProQuest Central Korea, SciTech Premium Collection, Technology Collection, ProQuest Central Essentials, ProQuest One Academic, Engineering Collection (ProQuest)
    Disponible
    Plus…
    Titre: On Codimension one Embedding of Simplicial Complexes
    Auteur: Björner, Anders; Goodarzi, Afshin
    Contributeur: Goodarzi, Afshin (pacrepositoryorg)
    Sujet: Upper Bounds ; Homology ; Geometric Topology ; Combinatorics
    Description: We study \(d\)-dimensional simplicial complexes that are PL embeddable in \(\mathbb{R}^{d+1}\). It is shown that such a complex must satisfy a certain homological condition. The existence of this obstruction allows us to provide a systematic approach to deriving upper bounds for the number of top-dimensional faces of such complexes, particularly in low dimensions.
    Fait partie de: arXiv.org, Mar 3, 2017
    Identifiant: 2331-8422 (E-ISSN)

    • Article
    Sélectionner

    On the connectivity of manifold graphs

    Björner, Anders, Vorwerk, Kathrin
    arXiv.org, Oct 22, 2013
    © ProQuest LLC All rights reserved, Engineering Database, Publicly Available Content Database, ProQuest Engineering Collection, ProQuest Technology Collection, ProQuest SciTech Collection, Materials Science & Engineering Database, ProQuest Central (new), ProQuest Central Korea, SciTech Premium Collection, Technology Collection, ProQuest Central Essentials, ProQuest One Academic, Engineering Collection (ProQuest)
    Disponible
    Plus…
    Titre: On the connectivity of manifold graphs
    Auteur: Björner, Anders; Vorwerk, Kathrin
    Contributeur: Vorwerk, Kathrin (pacrepositoryorg)
    Sujet: Connectivity ; Lower Bounds ; Theorems ; Graphs ; Combinatorics ; Geometric Topology
    Description: This paper is concerned with lower bounds for the connectivity of graphs (one-dimensional skeleta) of triangulations of compact manifolds. We introduce a structural invariant b_M for simplicial d-manifolds M taking values in the range 0
    Fait partie de: arXiv.org, Oct 22, 2013
    Identifiant: 2331-8422 (E-ISSN)

    • Article
    Sélectionner

    On the connectivity of manifold graphs

    Björner, Anders, Vorwerk, Kathrin
    Cornell University
    Disponible
    Plus…
    Titre: On the connectivity of manifold graphs
    Auteur: Björner, Anders; Vorwerk, Kathrin
    Sujet: Mathematics - Combinatorics ; Mathematics - Geometric Topology
    Description: This paper is concerned with lower bounds for the connectivity of graphs (one-dimensional skeleta) of triangulations of compact manifolds. We introduce a structural invariant b_M for simplicial d-manifolds M taking values in the range 0
    Identifiant: 1207.5381 (ARXIV ID)